219 research outputs found

    Discovery of the supernova remnant G351.0-5.4

    Full text link
    Context. While searching the NRAO VLA Sky Survey (NVSS) for diffuse radio emission, we have serendipitously discovered extended radio emission close to the Galactic plane. The radio morphology suggests the presence of a previously unknown Galactic supernova remnant. An unclassified {\gamma}-ray source detected by EGRET (3EG J1744-3934) is present in the same location and may stem from the interaction between high-speed particles escaping the remnant and the surrounding interstellar medium. Aims. Our aim is to confirm the presence of a previously unknown supernova remnant and to determine a possible association with the {\gamma}-ray emission 3EG J1744-3934. Methods. We have conducted optical and radio follow-ups of the target using the Dark Energy Camera (DECam) on the Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO) and the Giant Meterwave Radio Telescope (GMRT). We then combined these data with archival radio and {\gamma}-ray observations. Results. While we detected the extended emission in four different radio bands (325, 1400, 2417, and 4850 MHz), no optical counterpart has been identified. Given its morphology and brightness, it is likely that the radio emission is caused by an old supernova remnant no longer visible in the optical band. Although an unclassified EGRET source is co-located with the supernova remnant, Fermi-LAT data do not show a significant {\gamma}-ray excess that is correlated with the radio emission. However, in the radial distribution of the {\gamma}-ray events, a spatially extended feature is related with SNR at a confidence level 1.5\sim 1.5 {\sigma}. Conclusions. We classify the newly discovered extended emission in the radio band as the old remnant of a previously unknown Galactic supernova: SNR G351.0-5.4.Comment: 6 pages, 6 figures, accepted A&

    Synthesis, Structure, and Reactivity of Zirconium and Hafnium Imido Metalloporphyrins

    Get PDF
    The zirconium and hafnium porphyrin imido complexes (TTP)MNAriPr [TTP = meso-tetra-p-tolylporphyrinato dianion, M = Zr (1), Hf (2), AriPr = 2,6-diisopropylphenyl] were synthesized from (TTP)MCl2 and 2 equiv of LiNHAriPr. The zirconium imido complex, (TTP)ZrNAriPr, was also obtained from the preformed imido complex Zr(NAriPr)Cl2(THF)2 and (TTP)Li2(THF)2. Treatment of (TTP)HfCl2 with excess LiNH(p-MeC6H4) resulted in the formation of a bis(amido) complex, (TTP)Hf(NH-p-MeC6H4)2 (3), instead of an imido complex. In the presence of excess aniline, 2 formed an equilibrium mixture of bis(amido) compounds, (TTP)Hf(NHPh)(NHAriPr) and (TTP)Hf(NHPh)2. The nucleophilic character of the imido moiety is exhibited by its reaction with tBuNCO, producing isolable N,O-bound ureato metallacycles. The kinetic product obtained with zirconium, (TTP)Zr(η2-NAriPrC(NtBu)O) (4a), isomerized to (TTP)Zr(η2-NtBuC(NAriPr)O) (4b) in solution. Upon being heated to 80 °C, 4a produced the carbodiimide AriPrNCNtBu and a transient Zr(IV) oxo complex. The analogous hafnium complex (TTP)Hf(η2-NAriPrC(NtBu)O) (5a) did not eject the carbodiimide upon heating to 110 °C but isomerized to (TTP)Hf(η2-NtBuC(NAriPr)O) (5b). To support the formulation of 4a and 5a as N,O bound, the complex (TTP)Hf(η2-NAriPrC(NAriPr)O) (6) was studied by variable-temperature NMR spectroscopy. The corresponding thio- and selenoureato metallacycles were not isolable in the reaction between 1 and 2 with tBuNCS and tBuNCSe. Concomitant formation of the metallacycle with decomposition to the carbodiimide, AriPrNCNtBu, reflects the lower C−Ch bond strength in the proposed N,Ch-bound metallacycles. Treatment of 2 with 1,3-diisopropylcarbodiimide resulted in the η2-guanidino complex (TTP)Hf(η2-NAriPrC(NiPr)NiPr) (7a), which isomerized to the less sterically crowded isomer (TTP)Hf(η2-NiPrC(NAriPr)NiPr) (7b). Complexes 1, 2, 4a, 4b, and7a were characterized by X-ray crystallography. The monomeric terminal imido compounds, 1and 2, are isomorphous:  M−Nimido distances of 1.863(2) Å (Zr) and 1.859(2) Å (Hf); M−Nimido−C angles of 172.5(2)° (Zr) and 173.4(2)° (Hf). The structures of the ureato complexes 4aand 4b and the guanidino complex 7a exhibit typical alkoxido and amido bond distances (Zr−N = 2.1096(13) Å (4a), 2.137(3) Å (4b); Zr−O = 2.0677(12) Å (4a), 2.066(3) Å (4b); Hf−N = 2.087(2) Å, 2.151(2) Å (7a))

    Addition and Metathesis Reactions of Zirconium and Hafnium Imido Complexes

    Get PDF
    The zirconium and hafnium imido metalloporphyrin complexes (TTP)MNAriPr (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion; M = Zr (1), Hf; AriPr = 2,6-diisopropylphenyl) were used to mediate addition reactions of carbonyl species and metathesis of nitroso compounds. The imido complexes react in a stepwise manner in the presence of 2 equiv of pinacolone to form the enediolate products (TTP)M[OC(tBu)CHC(tBu)(Me)O] (M = Zr (2), Hf (3)), with elimination of H2NAriPr. The bis(μ-oxo) complex [(TTP)ZrO]2 (4) is formed upon reaction of (TTP)ZrNAriPr with PhNO. Treatment of compound 4 with water or treatment of compound 2 with acetone produced the (μ-oxo)bis(μ-hydroxo)-bridged dimer [(TTP)Zr]2(μ-O)(μ-OH)2 (5). Compounds 2, 4, and 5 were structurally characterized by single-crystal X-ray diffraction

    Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent

    Get PDF
    This work contributes to the Defra funded projects AC0116: ‘Improving the nitrous oxide inventory’, and AC0114: ‘Data Synthesis, Management and Modelling’. Funding for this work was provided by the UK Department for Environment, Food and Rural Affairs (Defra) AC0116 and AC0114, the Department of Agriculture, Environment and Rural Affairs for Northern Ireland, the Scottish Government and the Welsh Government. Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council. This study also contributes to the projects: N-Circle (BB/N013484/1), U-GRASS (NE/M016900/1) and GREENHOUSE (NE/K002589/1).Peer reviewedPublisher PD

    Global Research Alliance N2O chamber methodology guidelines: Recommendations for deployment and accounting for sources of variability

    Get PDF
    Adequately estimating soil nitrous oxide (N2O) emissions using static chambers is challenging due to the high spatial variability and episodic nature of these fluxes. This paper discusses how static chamber N2O experiments can be designed, and protocols implemented, to better account for this variability and reduce the uncertainty of N2O emission estimates. It is part of a series of papers in this special issue, each discussing a particular aspect of N2O chamber methodology. Aspects of experimental design and sampling affected by spatial variability include site selection, and chamber layout, size and areal coverage. Where used, treatment application adds a further level of spatial variability. Time of day, frequency and duration of sampling (both in terms of individual chamber closures and overall experiment duration) affect the temporal variability captured. In addition, we present best practice recommendations for experimental chamber installation and sampling protocols to minimise the introduction of further uncertainty. To obtain the best N2O emission estimates, resources should be allocated to minimise the overall uncertainty in line with experiment objectives. In some cases, this will mean prioritising individual flux measurements and increasing their accuracy and precision by, for example, collecting ≥4 headspace samples during each chamber closure. However, where N2O fluxes are exceptionally spatially variable, for example, in heterogeneous agricultural landscapes, such as uneven and woody grazed pastures, using available resources to deploy more chambers with fewer headspace samples per chamber may be beneficial. Similarly, for particularly episodic N2O fluxes, generated for example by irrigation or freeze-thaw cycles, increasing chamber sampling frequency will improve the accuracy and reduce the uncertainty of temporally interpolated N2O fluxe

    An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture

    Get PDF
    A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N _2 O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH _3 ) volatilization, nitrate (NO _3 ^− ) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N _2 O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N _2 O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH _3 volatilization, NO _3 ^− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N _2 O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N _2 O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted

    A Self-consistent Model for Brown Dwarf Populations

    Get PDF
    We present a self-consistent model of the Milky Way to reproduce the observed distributions (spectral type, absolute J-band magnitude, effective temperature) and total velocity dispersion of brown dwarfs. For our model, we adopt parametric forms for the star formation history and initial-mass function, published evolutionary models, and theoretical age–velocity relations. Using standard Markov Chain Monte Carlo methods, we derive a power-law index of the initial-mass function of α = −0.71 ± 0.11, which is an improvement over previous studies. We consider a gamma-function form for the star formation history, though we find that this complex model is only slightly favored over a declining exponential. We find that a velocity variance that linearly increases with age and has an initial value of km s−1 best reproduces the total velocity dispersions. Given the similarities to main-sequence stars, this suggests brown dwarfs likely form via similar processes, but we recognize that the sizable uncertainties on σ0 preclude firm conclusions. To further refine these conclusions, we suggest that wide-field infrared imaging or low-resolution spectroscopic surveys, such as with the Nancy Grace Roman Space Telescope or Euclid, could provide large samples of brown dwarfs with robust spectral types that could probe the thickness of the thin disk. In this way, the number counts and population demographics could probe the same physical processes as with the kinematic measurements, however may provide larger samples and be subject to different selection biases

    Towards country-specific nitrous oxide emission factors for manures applied to arable and grassland soils in the UK

    Get PDF
    Nitrous oxide (N2O) emission factors (EFs) were calculated from measurements of emissions from livestock manures applied to UK arable crops and grassland as part of a wider research programme to reduce uncertainty in the UK national agricultural N2O inventory and to enhance regional inventory reporting through increased understanding of processes and factors controlling emissions. Field studies were undertaken between 2011 and 2013 at 3 arable and 3 grassland sites in the UK. Nitrous oxide emissions were measured following the autumn and spring application of different manures (pig slurry, cattle slurry, cattle farmyard manure (FYM), pig FYM, poultry layer manure, and broiler litter) at typical rates, using representative manure application and soil incorporation methods. In addition, ammonia emissions and nitrate leaching losses (1 site on a light sandy soil) were measured to calculate indirect N2O losses. IPCC comparable, direct N2O EFs ranged from −0.05 to 2.30% of total nitrogen applied, with the variability driven by a range of factors including differences in manure composition, application method, incorporation and climatic conditions. When data from the autumn applications were pooled, the mean N2O EF from poultry manure (1.52%) was found to be greater (P < 0.001) than from FYM (0.37%) and slurry (0.72%), with no difference found (P = 0.784) in the EF for bandspread compared with surface broadcast slurry application, and no effect (P = 0.328) of the nitrification inhibitor, Dicyandiamide (DCD). For the spring applications, the mean N2O EF for bandspread slurry (0.56%) was greater (P = 0.028) than from surface broadcast slurry (0.31%), but there were no differences (P = 0.212) in the mean N2O EFs from poultry manure (0.52%), slurry (0.44%), and FYM (0.22%). The study did confirm, however, that DCD reduced N2O emissions from slurries applied in the spring by 45%. EF data from this project have been used in the derivation of robust Tier 2 country specific EFs for inclusion in the UK national agriculture greenhouse gas inventory

    Frontiers in Precision Medicine IV: Artificial Intelligence, Assembling Large Cohorts, and the Population Data Revolution

    Get PDF
    Large cohort studies and more recently electronic medical records (EMR) are being used to collect massive amounts of genetic information. Implementation of artificial intelligence has become increasingly necessary to interpret this data with the goal of augmenting patient care. While it is impossible to predict what the future holds, policy makers are challenged to create guiding principles and responsibly roll out these new technologies. On March 22, 2019, the University of Utah hosted its fourth annual Precision Medicine Symposium focusing on artificial intelligence, assembling large cohorts, and the population data revolution. The symposium brought together experts in medicine, science, law and ethics to discuss and debate these emerging issues
    corecore